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Abstract—Using a form of expansion first suggested by Merk, series are given for evaluating accurately

the “wall gradient™ (b}/B) for the case when no mass flows through the phase boundary. These cover

wide ranges of main-stream pressure gradient and give good accuracy for any value greater than 0-5

of the Prandtl/Schmidt number o. Values obtained compare well both with the few exact solutions

given in the literature and with exact numerical integration. Curves are drawn of a number of other
functions obtained from this “wall gradient™.

Résumé—Des séries, obtenues en utilisant une forme de développement préconisée primitivement
par Merk, sont données pour le calcul précis du “gradient a la paroi” by/B dans le cas ot aucun
transport de masse ne s’effectue a la limite de la phase. Elles couvrent un grand domaine de gradient
de pression de ’écoulement principal et assurent une bonne précision pour toute valeur ¢ du rapport
du nombre de Prandtl au nombre de Schmidt supérieure a 0,5. Les valeurs obtenues se comparent
bien aux quelques solutions exactes données dans la littérature et a celles de 'intégration numérique
exacte. Des sourbes d’un certain nombre d’autres fonctions obtenues & partir de ce *“‘gradient a la
paroi’” sont tracées.

Zusammenfassung—Mit Hilfe einer zuerst von Merk vorgeschlagenen Reihenentwicklung kann der

»Wandgradient* (6;/B) genau berechnet werden, wenn kein Mengenstrom durch die Phasentrenn-

schicht tritt. Diese Reihen umfassen ein grosses Gebiet des Druckgradienten der Hauptstromung

und sind fir beliebige Werte der Prandtl/Schmidtzahl o die grosser als 0,5 sind, sehr genau. Die

errechneten Werte stimmen gut iiberein mit den wenigen genauen Losungen der Literatur und der

exakten numerischen Integration. Kurven fiir eine Reihe anderer, mit Hilfe dieses ,,Wandgradienten"
erhaltener Funktionen sind angegeben.

Annoramua-—Vcnoassya BHA passoxeHNd, BIEpPBHle NpefI0ikeHHblT MeprkoM, nIpuBOAATCA
PAIB LIS TOYHON OLEHKH «IIPUCTEHHOTO rpajmeHTay (by/B) pudA ciyvas, KOTZa OTCYTCTBYeT
NMOTOK MacCel dYepe3 TpaHuuy ¢asnl. 3TH pPA3IoKeHNS OXBATHBAIT IUINPOKHE O0B6IACTII
TpajgueHTa JlaBJieHuA OCHOBHOTO MOTOKA M JAI0T BHICOKYI0 TOUHOCTL BO BCEX CIAydUaAX, KOTJA

orHolrenne vmcaa Ilpamarna w umeny Ilumuara ¢ Gonpie 0,5.

ITonyyennpie BeTHUMHLL

XOpouo CONOCTAaBMMEL KaK ¢ HEKOTOPBIMU MM EIOIMMUCH B JUTepaAType TOYHBIMI PeIleHUAMIL,

Tark M C Ppe3yapTaTaMi

TOYHOTO YUCJIEHHOIrO

HHTErpupoBaHUA.

IIpuBopaTca Kpunble

HEKOTOPHIX APYIUX (PYHKIUE, MO.Ty4eHHHX HA OCHOBE (IIPHCTEHHOTO IPAJMEHTa».

NOTATION
Coefficients in equation (13); see also
Table 2 (—);
Coeflicients occurring in equation (9) and
defined in equation (11) (—);
Dimensionless conserved fluid property
(see Paper 3 for discussion of its form and
meaning) (— );

* The Division is now located at P.O. Box 43, Ryde,
N.S.W., Australia.
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b,
B
Cn
E

Egep

Gradient of b adjacent to the interface
(—);

Driving force for mass transfer (discussed
in Paper 3) (—);

Coeflicients occurring in equation (18) and
defined by equation (20) ( — ):

Integral in equation (9); evaluated numeric-
ally using Table 2 ( —);

Integral of equation (18); evaluated nu-
merically from equation (21) ( — );
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f  Dimensionless stream function (defined
and discussed in Paper 1) (—);

Jo S .+ | The value of fand its derivatives at the
o J interface (—);

ue d8}\ parameter giving rate of growth of

2 2(:“,,7 dx / the momentum thickness 8,; dis-

cussed in Paper 1 {(— );

g Mass transfer conductance (see Paper 3)
(Ib/ft*h);

g* Value of g for B = 0. (See equation 27)
{Ib/ft2h);

m  Number occurring in equation (20) speci-
fying terms in equation (18). Also used to
specify terms in equation (9) like that of
equation (12) ( —);

n Number occurring in equation (11) speci-
fying terms in equation (9) (—);

Nu Local Nusselt number in terms of the
length x (—);

q Number specifying terms in equation (13)
(—);

7 Number occurring in equation (15) (—);

Local Reynolds number (== ugx/v} (—);

u Velocity component parallel to interface
(ft/h);

ue  Value of u in the main-stream immediately
outside the boundary layer (ft/h);

v Velocity component normal to interface
(ft/h);

W  Curvature parameter in terms of 4,
{equation 30) (— );

x  Distance parallel to interface measured
from start of boundary layer (ft);

X Curvature parameter in terms of 4,

(equation 28) (— );

Curvature parameter in terms of 4, applic-

able to separation point (equation 39)

(—X

¥y Distance perpendicular to interface (ft);

Y  Parameter which is a measure of the rate of

growth of 4, (equation 29) (—);

Parameter corresponding to Y applicable

near separation point {(equation 38) (—);

Z  Parameter which is a measure of the rate of
growth of 4, (equation 31) (— ).

Xsep

Ysep

Greek symbols
B Parameter occurring in velocity equation
(equation 2); discussed in Paper 1 (— );

y  Fluid property called the ‘“‘exchange
coefficient” (diffusion coefficient times
density, or thermal conductivity divided by
specific heat at constant pressure) (Ib/ft h);

8, Momentum boundary layer thickness
= | (ujuc)(1 — ujua) dy (f0):

8, Shear boundary layer thickness
= ug/(0u/dy)o) (ft);

4,  Convection boundary layer thickness

= [ (ufuc)(1 — b/B) dy (ft);

4, Conduction boundary layer thickness
= BJ(@b[2y)s (F1); _
b Dimensionless distance variable for “‘simi-

lar” solutions { — );

" Dynamic viscosity of fluid (Ib/ft h};

v Kinematic viscosity of fiuid (= p/p) (fi*/h);

p Density of fluid (1b/ft%);

¢ Prandtl or Schmidt number (= u/y) ( —);

@ Integration variable occurring in equations
(9) and (18) (—).

Subscripts

G Denotes fluid state in main-stream just
outside the boundary layer;

Denotes “separation™ conditions of section
3.2;

0  Denotes fluid state adjacent to the interface;
g Denotes terms in equation (13);

m Denotes terms in equation (18);

n  Denotes terms in equation (9).

A prime ’ denotes differentiation with respect to
7.

1. INTRODUCTION

1.1 General remarks
THE first two papers in the present series,
Spalding [1], Spalding and Evans [2], were
concerned exclusively with the velocity equation
of laminar boundary layer theory when mass
flows through the boundary layer, and Paper 3,
Spalding and Evans [3], dealt with the b&-
equation. In this latter paper tables were given
from which new approximate solutions to the
b-equation could be evaluated. These gave
reasonable agreement with known exact solu-
tions over wide ranges of the Prandtl/Schmidt
number, main-stream pressure gradient and the
mass transfer driving force B. ‘

The present paper is concerned with the case
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when B, the driving force for mass transfer, is
zero. The work has developed out of the methods
employed in obtaining the earlier results so
frequent reference will be made to the first three
papers in the series.

Since the main aim of the present series is the
prediction of mass transfer rates, the case when
mass transfer is in fact zero may be thought to
be irrelevant. But this is not the case, for, as was
pointed out in Paper 3, we are interested in
families of solutions to the boundary layer
equations for both positive and negative values
of B: the solutions for B =0 must therefore
form important members of these families. It is
also found that many practical problems in-
volving mass transfer correspond to very small
values of B; this is often the case, for example,
when water vapour either evaporates into or
condenses out of the atmosphere at ordinary
temperatures and pressures. The case for B =0
can then serve as a useful first approximation,
the effects of mass transfer being regarded as a
small correction. In fact, Paper 3 contained an
approximate formula for estimating the mass
transfer conductance g from the value of g*,
the conductance when B — 0. Using tables to
be given later it is possible to calculate g* to high
accuracy.

The present results are expected to be most
useful, however, in problems when mass transfer
is entirely absent; the most obvious case is that
of heat transfer to or from an impervious wall.
Although, in the literature, a number of papers
consider this type of problem, comparatively
few exact solutions to the equations could be
found; most of these have already been quoted
in Paper 3.

The quantity being evaluated in the present
paper is (b,/B). Reference to formulae in Paper 3
indicates that when B =0, so is b, (= —af)).
The ratio (b,/B) is not zero, however, for, in
terms of the familiar problem of pure heat
transfer it is the gradient at the wall of the
dimensionless temperature with respect to the
“similar” distance variable 7. In the customary
nomenclature of heat transfer, therefore, we have:

(by/B) = Nu (2 — B)'/*/Re'. M

where:
Nu = local Nusselt number,

Re = local Reynolds number, and
B = parameter occurring in the velocity
equation.

1.2 Outline of present paper

The main purpose of the present paper is to
give series expansions from which, knowing the
solutions to the “similar” velocity equation,
values of the “wall gradient” (b,/B) may be
obtained to high accuracy for a range of values
of the parameter B, which determines the magni-
tude of the main-stream pressure gradient, and
for any value greater than 0-5 of the fluid
property group a.

The series from which values of (b,/B) are
obtained are in increasing inverse powers of o;
they are therefore very accurate for high values
of ¢. Some exact values for ¢ = 0-7 were found
in the literature. Sufficient terms were therefore
taken in the series to give close agreement in the
fourth significant figure with these exact solu-
tions. The values of (b,/B) quoted are then
accurate to better than 0-1 per cent even when
o is as low as 0-7.

Using the series, a table of (b,/B) as a function
of the parameters 8 and o has been drawn up in
which the interval in both these parameters is
small enough to allow of rapid interpolation
for intermediate values. In many cases, however.
it may be more satisfactory to use the original
series for intermediate values of o.

As has been pointed out in earlier papers, the
main interest in obtaining “‘similar” solutions to
the boundary layer equations is not so much in
their application to strictly “similar” physical
configurations (e¢.g. flow over wedges) as in the
way they can be used to solve more general
problems involving non-similar flows.

Some functions which are useful for such
calculations are plotted in Figs. 1-4 but are
only briefly discussed here as their significance
and applications are to be considered more
fully in other papers in the series.

2. STATEMENT OF THE MATHEMATICAL
PROBLEM
2.1 Introduction
It was shown in Paper 3 that the b-equation
governs the distribution in the boundary layer of
any conserved fluid property. The present paper
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is mainly concerned with the “similar” solutions
to this equation. It should be made clear, how-
ever, that the word “solution” is used in a re-
stricted sense in that the important entity to be
evaluated is the gradient of b at the phase
boundary, although many other functions in the
boundary layer may be obtained from this
gradient. Interest is concentrated on this *‘wall
gradient” because the present series of papers is
mainly concerned with rates of transfer through
the phase boundary, these rates being determined
immediately the wall gradient is known. The
distribution of b in the boundary layer is not
evaluated, although obtaining the wall gradient
is an important first step in getting this distribu-
tion.

Solutions to the b-equation depend, of course,
on the distribution of the stream function. It
will therefore be necessary to refer frequently to
the velocity equation for “similar” flows. This
will be quoted but not discussed; reference to
discussions and tables given in Papers 1 and 2
will suffice for the purposes of the present

paper.

2.2 The velocity equation

In Paper 1, Spalding [1], it was shown that,
for “similar” solutions to the boundary layer
equations the velocity distribution is governed by
the ordinary differential equation:

R BA - ) =0. @

When no mass flows through the interface, the

boundary conditions associated with this
equation are:
1=0,f=0, =0
, } 3)
7>, f'—>1

In equations (2) and (3) the primes denote differ-
entiation with respect to the dimensionless space
co-ordinate 7, f is the dimensionless stream
function and B a parameter whose value depends
on the acceleration of the main-stream. These
functions are more fully defined in the notation
list.

2.3 The b-equation
In Paper 3, Spalding and Evans [3], it was
shown that for a certain restricted group of

“similar” solutions to the boundary layer
equations, the distribution of a function b, which
represents a conserved fluid property in suitable
dimensionless form, is governed by the ordinary
differential equation:

b’ + o =0 4)
with the boundary conditions:
7=0, b=20

}- (3
7—>w, h—>B

In equation (4) the primes again denote differ-
entiation with respect to %, f is the stream func-
tion occurring in equation (2) and o is the fluid
property group called the Prandtl or Schmidt
number depending on the transferred fluid
property which is under investigation. The
quantity B occurring in equation (5) is the value
of b in the main-stream and is assumed to be
constant.

From equation (4) the gradient of b at the
interface, namely b, can in principle be evalu-
ated once solutions to the velocity equation are
known. This is done using the relationship:

(Blbg) = j, exp —{o [} fdn}dn.  (6)

It is convenient, for the present, to work in terms
of the reciprocal of (by/B).

The aim of the present paper is to evaluate this
integral for a range of values of the parameter 8
occurring in equation (2) and for any value of
o greater than 0-5.

The tables given in Paper 3 included the case
B = 0 and approximate values of this integral
could be obtained from them. The accuracy of
those tables increased with increasing o. The
present results are accurate for all high values of
ag.

3. EVALUATING THE INTEGRAL AS A
POWER SERIES IN ¢

When evaluating the integral in equation (6)
for various values of the parameter B, with the
single exception of the separation point when
B = —0-1988, all values of B considered here
could be treated by one general method. This
will be given first and the separation point will
then be treated by a modified form of this
method.
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3.1 The general case

It is clear that the integral in equation (6)
for any value of ¢ depends only on the distribu-
tion with » of the stream function f. Unfortunate-
ly, however, only a few accurate values of the
integral could be found in the literature.

On the other hand Merk [4] has shown that
the integral can be expressed as a series in inverse
powers of ¢, which would be very accurate for
large values of o. Although the present work
arose out of that paper, the method of deriving
the series expansion differs in many respects
from that given by Merk, and so will be given in
outline below. It has also been possible to modify
the present method to include cases when mass
transfer occurs; this work is to be considered
elsewhere.

Denoting quantities when evaluated at the
interface by the suffix 0, the stream function f
can be expanded in terms of derivatives there in
the form:

LR S S

»»»»» 4 . fin?

--+f—‘ - (D

Inserting this into the integral in equation (6)
and changing the variable from v to ¢, where:

o ey )
¢ == 3](,0 7 ®

the integral to be evaluated becomes:
E J;O e=2@~23 exp —{Ayq*3 + A3
+ Agg™® + .. dy. (9)
The quantity (b,/B) is obtained from E using
the relationship:
o'f" 1/3
£(%)

(by/B) = (10)

Table 1. Values of the stream function “wall gradient”

since /] is known. The problem therefore reduces
to the evaluation of E in equation (9).

The tables given in Paper 3 were approximate
in that only the first two terms in the expansion
given in equation (7) were used (remembering
that we are considering here the case of no mass
transfer so that f, is zero). In the present paper
many more terms are included.

The coefficients A, occurring in the expression
for E are given by the general formula:

1 () 731\ (el
fo ( ) Can

An == i ¥
1%,

o m-2)73 (n _;_ 1);
Since the present discussion is restricted to the
case when no mass flows through the interface
the coefficients 4,, 4, and A4, are zero,
because of the transformation used in obtaining
E, the coefficient 4, is reduced to unity.
In order to calculate the coefficients 4, the
values of f, @), the derivatives of f at the wall.
were needed. These were obtained from equation

{2) by successive differentiation. In this way each

ard
ana

fo™ higher than /% could be expressed in terms

of /) and the parameter 8.

Values of the function f; for the values of 8
considered in the present paper are given in Table
1. For values of B up to 2-0 these were taken from
Falkner [5, 6]; the method used for evaluating

4 for higher values of 8 was given in Paper 2.

In the expression for £ given in equation (9)
the second exponential term in the integrand
can be expanded as a series in powers of ¢.
Each term under the integral sign is then of the
form e~»@™3, where m has a different value for
each term; the integral may then be readily
evaluated term by term using the relationship:

m -+ 3) (12)

fy egride = F("T’

. for the values of B considered in the

present paper
g —01988 01 00 01 02 03 04 05
5' \ 0 03191 04696 05870 06869 07748 08542 09277
8 | 06 08 10 14 2:0 30 40 50
4 09960 111200 12326 1431 1687 2:043 2:346 2614

[
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where T' denotes the gamma function. The final
step in obtaining the required series for E is to
rearrange these terms into a series in inverse
powers of ¢ having the form:

E=T(h+ >

g=1

(13)

in which the coefficients a, are functions of the
quantities A, and gamma functions; these co-
efficients become more complicated as ¢ in-
creases.

The numerical values of only three gamma
functions were needed, namely:

I'(}) = 2:678%4, I'(3) = 1:35412,
ey =L (14)
All other gamma functions which occurred

could be expressed in terms of these using the
relationship:

(r+ 1) = r0(r) (15)

which holds for any value of r for which the
gamma function exists.
Numerical values of the first nine coefficients

a, are given in Table 2. This covers the range
—0-1 < B < 5-0. In both directions outside this
range the accuracy of the present method
diminished, particularly when ¢ was less than
unity. The region approaching conditions lead-
ing to “separation” of the velocity boundary
layer, namely for —0-1988 <{ B <{ —0-1, was par-
ticularly difficult to treat. On the other hand the
separation point itself, when 8 = —0-1988,
yielded a series which gave high accuracy.

3.2 The separation point

When B = —0-1988 the velocity boundary
layer is said to “‘separate” from the interface;
for the present discussion this merely means that
S, becomes zero. The above analysis does not
then apply because the transformation defined
by equation (7) cannot be used. A modification
of the procedure can, however, lead to an
asymptotic series from which (by/B) can be
evaluated to high accuracy. Merk [4] also
considered this case but as there appears to be a
numerical error in the expansion he obtained, the
derivation of the relevant series will be given
here.

Table 2. Values of the first nine coefficients in the series expansion of the integral E.

() =2 (%)
B/  E\37)

o0
E — 267894 + Zi‘f,
0.(]/3

g=1

B a a, ag ay as ag a, ag a,
—0-1| —0-18308 0-04341  0-05748 —0-00357  0-00037 —0-00702 —0-00185 --0-00098  0-000968
00 00 00 005953 00 00 —0-00661 00 00 0-000717
0-17 008344 0-00854 0-04884  0-00153 —0-00001 —0-00587 —0-00062 —0-00013 ~ 0-00089
0-2 0-13533 002247 004092  0-00144 —0-00045 —0-00516 —0-00081 —0-00021  0-00092
03 0-17289 003668  0-03465  0-00110 —0-00118 —0-00456 —0-00086 —0-00018  0-00091
04 0-20240 0-05027  0-02930  0-00080 —0-00206 —0-00403 —0-00085 --0-00002  0-00090
05 0-22663 006302 002442  0-00057 —0-00302 —0-00352 —0-00086  0-00019  0-00086
06! 024738 007509 001985  0-00042 —0-00403 —0-00301 —0-00089  0-00045  0-00086
0-8 | 028207 009763 0-01136  0-00040 —0-00612 —0-00189 —0-00103  0-00109  0-00056
1:0| 0-31031 0-11816  0-00316  0-00053 —0-00834 —0:00061 —0-00127 0-00190  0-00018
1-4] 035604 0-15555 —0-01247 000140 —0-01296 000262 —0-00201  0-00390 —0-00111
20, 040841 020468 —0-03568 0-00315 —0-02078  0-00913 —0:00390 000787 —0-00464
30| 047470 027651 —0-07325 000774 —0-03527  0-02523 —0-00889  0-01731 —0-01553
40 052632 0-33992 —0-11085 001306 —0-05227 0-04740 —0-01673 003016 —0-03392
5:0 0-56951 0-39798 —0-14828  0-01907 —0-07133 007600 —0-02728  0-04692 —0-06080

When # — —0-1988, (

!

Egop \ 4!

1174
) -4 ("fL) " Euep = 362561 +

0-005907 _ 0-0001405

o? a3

0084049 T oy
[+4
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Since /7 is zero the expansion for f takes the
form:
i1

o 7
U RN TR T
7}15
+ XOV iﬁs! + DI (]6)
Using the transformation:
laf‘lll
(%) ar

the integral to be evaluated, denoted by Fgsep
since it applies only to the separation point,
Is:

Egep = );0 e*p ¥ exp —{Crp?® + Cy¢®
+ Cisg* + .. .jde (18)

and (by/B) is obtained from Esep using the
relationship:

4 ('Qf'{,')” ) (19)

R

sep

The coefficients C,, occurring in equation (18)
are given by the general formula:

1 {m) 4! {(m-+1)/4
Jo (f) . (0

=94 (m DL\ [,

Again expanding the exponential term in the
integrand of equation (18) gives a series for
Egep in terms of gamma functions and the
coefficients C,,. Using the values f’; = 0-1988
and I'(}) = 3-62561 gives finally for Egep the
asymptotic expansion:

0084049  0-005907

C, =

Esep : 3'62561 +

i i
0-0001405
g

g

+ 0(o™%). 1
As has been noted the coefficients in this series
differ from the values given by Merk [4]. The
series also contains one more term than was given
by Merk.

3.3 Asymptotic behaviour at high ¢

It is clear from equation (13) that for high
values of ¢ the integral £ is constant. From
equation (10) therefore, (bg/B) is proportional

to o/3. This is a well-known relationship which
was exploited when plotting some of the figures
given in Paper 3. In order to bring closer together
curves for different values of ¢, the group
o13(h;/B) was plotted against the driving force
B

This relationship does not, however, hold for
the separation point. From equations (19) and
(21) it may be seen that for this case when ¢ is
large, (by/B) is proportional to e'/4,

These asymptotic relationships will be used
later to include on the same figures curves re-
lating to a wide range of o.

4. FUNCTIONS OBTAINED FROM THE
ASYMPTOTIC SERIES
4.1 Introduction

The asymptotic formulae given in Table 2 for
evaluating (b,/B) should only be used for o = 0-5
since the accuracy decreases rapidly as o de-
creases below this value.

Using these formulae values of (hg/B) have
been calculated for wide ranges of B and o: the
results are given in Table 3.

The range of main-stream pressure gradient
included in Table 3 covers the values encountered
in a wide range of practical problems. It includes
the point of separation for two-dimensional
flow (B = —0-1988), the case of zero pressure
gradient (B = 0), the stagnation point for axially
symmetric, three-dimensional flow (correspond-
ing to B8 = 0-5; see Paper 1), the stagnation point
for two-dimensional flow (8 = 1:0) as well as
some more highly accelerated main-streams than
the last.

For application to problems involving heat
transfer calculations, when ¢ is the Prandtl
number, the table covers the case of most gases,
which have a Prandtl number near 0-7, as well as
the majority of liquids. The Prandtl number for
water, for example, ranges from about 7 at room
temperature to about 2:0 at 200°F. Typical
values for a more viscous fluid like engine oil
would be ¢ = 10000 at room temperature to
o == 1000 at 150°F. Fluids such as liquid metals,
which have a high thermal conductivity and
therefore a low Prandtl number (e.g. for mercury
o == 0-02), are not however included.

Fluids will rarely have values of ¢ exactly equal
to those given in Table 3 but the intervals in the
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parameters B and ¢ are believed to be convenient
for interpolation over most parts of the table.
This is clearly not true for decelerated flow ap-
proaching the conditions when the velocity
layer separates. Although such interpolation
would give the sort of accuracy needed for many
practical problems, higher accuracy may some-
times be needed for some value of ¢ not given.
It is then a simple matter to calculate new values
of (by/B) from the series given in Table 2.

4.2 Accuracy of Table 3

The series from which the values of (b;/B) given
in Table 3 were calculated are asymptotically
accurate for high values of o. For sufficiently large
o therefore the figures should be correct to one
place in the last digit. For o < 1 however the
accuracy may not be so high.

Some idea of the accuracy of the values may
be obtained by comparing with exact solutions
quoted in the literature. This is done in Table 3
by giving in brackets the differences in the final
digit between the present values and exact
solutions given in the literature. The exact
values were taken from Mickley er al [7}],
Merk [4], Livingood and Donoughe [8] and
Howe and Mersman [9]. It should be realised,
however, that exact solutions quoted in the
literature are found to disagree with each other
by up to three units in the fourth significant
digit.

Exact calculations made since Table 3 was
drawn up, using an entirely different method,
have largely confirmed the figures in the table.
Many values can be in error by one unit in the
last place due to rounding off. This is, in fact, the
case. Apart from these, however, the only serious
errors in the table are for ¢ = 0-5 and 0:6 but
even so only amount to 3 units in the last sig-
nificant digit. The results of exact calculations
are to be published elsewhere.

No exact calculations have, however, been
made for the region marked off in the table as
inaccurate. Values in this region are almost
certainly inaccurate.

4.3 Other functions evaluated from (b,/B)
It was shown in Paper 3 that a number of
other functions related to the b-boundary layer

may be evaluated from (by/B). For ease of refer-
ence, and because many of the formulae take on a
special form when no mass flows through the
interface, the relevant formulae are listed below:

4‘% N (bé%)‘z @2

E il
& ‘(ijixi _ ?Q}:z;@ ("%3)2 (25)
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ceir(a) () e
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r ) w5 =26 @

_ AYR8YR dug  B(by/BY”
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s d . 3(byBye
Z = ; (u—c;) a (e = 5 (of (31

In the literature many functions are written in
terms of the distance x of the point in question
from the start of the boundary layer. In terms of
the present formulation of similar solutions some
of these functions are:

1 by
NuRe® = o oa(3) G
d.Re® (2 — P2
x T GyB) 33)
4,ReVE (2 — BYV2(b!
-2 = _ﬂf;mm(_ﬁ) (34)
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where the Nusselt number Nu and the Reynolds
number Re have local values.

5. CURVES OF FUNCTIONS OBTAINED
FROM TABLE 3
5.1 General

Curves have been drawn showing the relation-
ships between many of the functions occurring
on the left-hand sides of equations (22) to (31).
Some interesting features about the curves will
be indicated but their application for calculating
functions in non-similar boundary layers will not
be discussed. This is to be done in other papers in
the series.

In Papers 1 and 2 it was shown that, in order to
use the “similar’ solutions to the velocity equa-
tion to obtain information about non-similar
boundary layers, tables or curves were needed
showing the variation of a quantity denoted by
F, with the parameter (8%/v)(dug/dx). The latter

35

is clearly a pressure gradient parameter related
to the momentum boundary layer thickness
8, and F,, which is (ue/v)(d8%/dx), is a measure
of the rate of growth of the momentum thickness
with distance x.

Figures 1(a, b) and 2(a, b) give analogous
relationships for thicknesses associated with the
b-boundary layer. The relevant functions have
been multiplied by an appropriate power of ¢ in
order to bring closer together curves for different
values of ¢. Early forms of these curves for one
value of o, namely o = 0-7, were given by Smith
and Spalding [10].

5.2 Figure 1(a)

This figure, which applies to the conduction
thickness 44, shows the relationship for ac-
celerated and slightly decelerated flows. Because
the wall gradient (bg/B) is almost exactly pro-
portional to ¢'/2 when o is large, the multiplying
factor in this figure is ¢/, As ¢ becomes very
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F1G. 1(a) Conduction thickness 4,, accelerated and slightly decelerated flows.
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Fic. 1(b) Conduction thickness 4,, decelerated flows. O Separation points.

large the curves clearly tend to the asymptotic
curve shown as ¢ = o0.

It is clear from the curves for decelerated
flows shown in this figure, which extend as far
as 8 = —0-1, that the wall gradient (by/B) is not
proportional to ¢/® in the lower part of the
range covered. Hence the cross-over of the curves
in this region. For more highly decelerated flows
the curves diverge rapidly, particularly those for
high o.

Because of the scale of this figure it was con-
venient to omit parts corresponding to highly
accelerated flows. Since the lines are only slightly

curved in this region it is easy to see how they
continue downwards and to the right.

5.3 Figure 1(b)

In section 3.3 it was noted that for the separa-
tion point (by/B) is proportional to o!/% The
curves corresponding to Fig. 1(a), but for deceler-
ated flows, have therefore been drawn using the
multiplying factor ¢1/2. The separation points for
a number of values of ¢ are shown on this figure.

There is some uncertainty about the shapes of
these curves as only three values of 8 could be
used from the present results. The curve for
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¢ = (-7 was drawn in using the results given by
Livingood and Donoughe [8). The other curves
were then made to have the same general shape
as this between 8 = —0-1 and 8 = —0-1988.

For ¢ = oo only the separation point is
included because for both 8 = 0 and 8 = —0-1
the relevant point is at the origin.

5.4 Figure 2(a)

This figure, which relates to the convection
thickness 4,, corresponds to Fig. 1{(a). The curves
have not been extended into the region of de-
celerated flow, however, as the shapes of the
curves could not be judged as was done for the
earlier figure.

It was again convenient to omit the region of
highly accelerated flows.

05

5.5 Figure 2(b)

This figure relates to the convection thickness
4, for decelerated flows. The scale of the figure
did not allow the curves for ¢ > 1000 to be
included and parts of the curves for ¢ > 10 had
to be omitted because their shapes could not be
judged with any certainty from that for o = 0-7.

Again a few separation points are indicated.

5.6 Figures 3 and 4

In suggesting an approximate method for
calculating rates of heat transfer between any
laminar fluid stream and a solid surface, Spald-
ing [11] set up differential equations which could
be integrated numerically in a fairly straight-
forward manner. Referring to expressions defined
in equations (28) to (31), the differential equation
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F1G. 2(a) Convection thickness 4, accelerated flows.
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for evaluating the conduction thickness 4, was
of the form:

Y = Y(X) (35)

and for the convection thickness 4, the equation
was:

Z = Z(W). (36)

In these equations the functions Y and Z are
measures of the rate of growth of the relevant
boundary layer thickness with distance x along
the wall, and the functions X and W are curva-
ture parameters which are a measure of the

amount by which the #-boundary layer penetrates
into regions where the velocity layer is appreci-
ably curved. The forms of the functions Y and
Z were obtained from the exact “‘similar”
solutions to the boundary layer equations.

When plotting ¥ and Z as functions of X and
W respectively, it was found that exact similar
solutions for a wide range of Prandtl number
were close to a single curve. Figs. 3 and 4 show
these relationships obtained from the present
results. Curves for only a few values of o are
drawn on these figures because such curves are
very close together on this scale.
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I

-4 3 -2 -1

Fi1G. 3. Y as a function of X.

— — — o large (from Paper 3).
present solutions.
inaccurate region.

When ¢ > 0-5, therefore, the assumption of a
single curve for the relationships given in equa-
tions (35) and (36) would introduce only a small
error in the estimation of boundary layer thick-
nesses for accelerated and slightly decelerated
flows. For conditions approaching separation,
however, the error would increase rapidly. These
conditions occur for large negative values of the
abscissae X and W, beyond the ranges of Figs.
3 and 4. The separation points themselves
correspondto X = —oo, Y =0and W = — 0,
Z = oo respectively.

In Figs. 3 and 4 the line for large o was ob-
tained from the approximate results given in
Paper 3.

] [ 2 3 4
X
O B=-—01
x B=05
A B=10.

It should be noted that when ¢ < 1-0 and
B > 2:0 the present results are inaccurate. This
inaccurate region has already been indicated in
Table 3. This shows up in Figs. 3 and 4 as a
reversal in the slopes of the curves for large
values of the abscissa.

In Fig. 3 all the results for ¢ > 20, except that
for the separation point, are close to the point
X =0, Y = 641, the well-known solution ob-
tained by Lighthill [12].

The points on Figs. 3 and 4 give a few values
of the parameter 8. The curves from the present
solutions have been extended beyond g8 = —0-1
by giving them the same shape as those for
o = 0-7 and o-large whose shapes were known.
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6. APPROXIMATE METHOD NEAR
SEPARATION

It has been seen that, if it is greater than 0-5,
the Prandtl/Schmidt number has only a small
effect when boundary layer problems are formu-
lated in terms of the functions X, Y, W and Z.
It is, of course, for the same reason that the
asymptotic series of Table 2 give good accuracy.
The close connection between the present results
and this approximate formulation may be seen
by comparing, say, equations (10) and (29). The
rate of growth parameter Y is related to the
integral E of the present paper by:

w
O B=—01
x B=035
A B=10.
E3
Y= (37

This immediately suggests that near the point of
separation the parameter Y should be replaced
by Ysep given by:

1 /6% 13 d 62\ 473
— | = — R i
Yeep Y (3_)}2)0 dx {A4 ( ,V2)o }
4 of Yy

BERCT

where the second form is written in terms of
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“similar” solutions. The corresponding curva-
ture parameter is:

_@uodedy _
N T N G I

the second form again being in terms of “similar”
solutions. For the case of no mass transfer, the
gradients of f occurring in the last expression
are givenby [y = —Bandf} = (28 —D(f )%

It should be noted that (8*u/d)®), cannot be
used in the numerator of Xgep because it is
identically zero for all 8 when no mass flows
through the wall. For very large ¢ it may be
shown that Ygep tends to the value 21-599.

In the same way other functions can be derived
to replace ¥ and Z near the point of separation.

(39)

7. CONCLUSIONS

(a) Using the formulae and coefficients given
in Table 2 and the values of f;" of Table 1, the
wall gradient (b,/B) can be evaluated accurately
for a wide range in the parameter 8 and for any
value greater than 0-5 of the Prandtl/Schmidt
number o.

(b) From values of (b,/B) many other func-
tions associated with the b-boundary layer can
also be evaluated from the formulae of section
4.3.

(¢) Using a different method of calculation
more accurate results than those in Table 3 have
now been obtained. They include results for
values of B, in particular many negative values,
not covered in the present paper as well as a
range of low values of o. These are to be published
elsewhere.
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