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Abstract-Using a form of expansion first suggested by Merk, series are given for evaluating accurately 
the “wall gradient” (b;/B) for the case when no mass flows through the phase boundary. These cover 
wide ranges of main-stream pressure gradient and give good accuracy for any value greater than 0.5 
of the Prandtl/Schmidt number cr. Values obtained compare well both with the few exact solutions 
given in the literature and with exact numerical integration. Curves are drawn of a number of other 

functions obtained from this “wall gradient”. 

R&m&Des series, obtenues en utilisant une forme de dCveloppement pr&zonis&e primitivement 
par Merk, sont donnks pour le calcul prkcis du “gradient B la paroi” b,,/B dans le cas oti aucun 
transport de masse ne s’effectue & la limite de la phase. Elles couvrent un grand domaine de gradient 
de pression de l%coulement principal et assurent une bonne pr&zision pour toute valeur a du rapport 
du nombre de Prandtl au nombre de Schmidt superieure & 0,5. Les valeurs obtenues se cornparent 
bien aux quelques solutions exactes donntes dans la litttrature et g celles de l’intkgration numCrique 
exacte. Des sourbes d’un certain nombre d’autres fonctions obtenues g partir de ce “gradient h la 

paroi” sont trades. 

Zusammenfassung-Mit Hilfe einer zuerst von Merk vorgeschlagenen Reihenentwicklung kann der 
,,Wandgradient“ (b$B) genau berechnet werden, wenn kein Mengenstrom durch die Phasentrenn- 
schicht tritt. Diese Reihen umfassen ein grosses Gebiet des Druckgradienten der Hauptstrijmung 
und sind fiir beliebige Werte der Prandtl/Schmidtzahl o die griisser als 0,5 sind, sehr genau. Die 
errechneten Werte stimmen gut iiberein mit den wenigen genauen Lijsungen der Literatur und der 
exakten numerischen Integration. Kurven fiir eine Reihe anderer, mit Hilfe dieses ,,Wandgradienten” 

erhaltener Funktionen sind angegeben. 

AHHOTa~MSI-~knonb3yfI BIIA pa3JIO?KeHmR, BIIepBbIe IIpeflZIOirceHHLIii MepKoM, IIpPIBOiUITCFl 

PX~I g;rs TO~HOI? oueHK&I snpqcTeHHor0 rpa;lzIeHTav (ha/B) z.m cnysafi, Korza ~TC~TCTBJ-em 

nOTOK MaCCLI sepe3 rpaHHuy @a3bI. 3T11 pWJIOirreHZifI 0XBBTbIB;IIOT ILIllpOKIle OrinaCTII 

rpaAlIeHTa AaBJIeHEiR OCHOBHOFO IIOTOKa II AElIOT RbICOKJ’H) TOgHOCTb BO BCeX C.J)“GU?X, KOrAa 

OTIIOIIIeHPIe YEICJIa npaHATJIFI K SHC.‘l~ ~MllATa CJ 60JIblUe 0,s. I~OJIyrIeHIIbIe BeFIIFIIIHLI 

XOpOlLlO COIIOCTaBMMbI KaK C HeKOTOpbIMLI MJfeIo~EIMHCfI B JIHTepaTJ’pe TO’IHbIMLi pelIIeHZfFi4tII, 

TaIi 11 C pe3yJIbTaTaMEI TOYHOrO WICJIeHHOrO IIHTerplIpOBaHHH. ~~HBo~JRTCFI IipIInbIt! 

HeKOTOpbIX ap?‘rHX @J’IIKqifir, IIO:IJ’~eHHblX HEI OCHOBe NIpEICTeHHOrO l?pa~HeHTW. 

NOTATION hi 
a4 Coefficients in equation (13); see also 

Table 2 (-); B 

-4 Coefficients occurring in equation (9) and 
defined in equation (11) ( - ) ; CT,, 

b Dimensionless conserved fluid property 
(see Paper 3 for discussion of its form and E 
meaning) ( - ); 

* The Division is now located at P.O. Box 43, Ryde, EseP 
N.S.W., Australia. 
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Gradient of b adjacent to the interface 

(-->; 
Driving force for mass transfer (discussed 
in Paper 3) (-); 
Coefficients occurring in equation (18) and 
defined by equation (20) ( - ): 
Integral in equation (9); evaluated numeric- 
ally using Table 2 ( - ); 
Integral of equation (18); evaluated nu- 
merically from equation (21) ( - ); 
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f Dimensionless stream function (defined 
and discussed in Paper 1) ( - ); 

derivatives at the 

parameter giving rate of growth of 
thickness S,; dis- 
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X sep 

Y 
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Y sep 
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’ cussed in Paper 1 ( - ); 
Mass transfer conductance (see Paper 3) 
(lb/ft2h); 
Value of g for B = 0. (See equation 27) 
(lb/ ft2h) ; 
Number occurring in equation (20) speci- 
fying terms in equation (18). Also used to 
specify terms in equation (9) like that of 
equation (12) ( - ); 
Number occurring in equation (11) speci- 
fying terms in equation (9) ( - ); 
Local Nusselt number in terms of the 
length x ( - ); 
Number specifying terms in equation (13) 
(-); 
Number occurring in equation (15) ( - > ; 
Local Reynolds number (= UGx/v) ( -) ; 

Velocity component parallel to interface 
(ftlh) ; 
Value of u in the main-stream immediately 
outside the boundary layer (ft/h); 
Velocity component normal to interface 
(ftih) ; 
Curvature parameter in terms of d, 
(equation 30) ( - ); 
Distance parallel to interface measured 
from start of boundary layer (ft); 
Curvature parameter in terms of d, 
(equation 28) ( - ); 
Curvature parameter in terms of d, applic- 
able to separation point (equation 39) 
f-): 
Distance perpendicular to interface (ft); 
Parameter which is a measure of the rate of 
growth of d, (equation 29) ( - ); 
Parameter corresponding to Y applicable 
near separation point (equation 38) ( - ); 
Parameter which is a measure of the rate of 
growth of d, (equation 3 1) ( - ). 

Greek symbols 
B Parameter occurring in velocity equation 

(equation 2); discussed in Paper 1 ( - ); 

Fluid property called the “exchange 
coefficient” (diffusion coefficient times 
density, or thermal conductivity divided by 
specific heat at constant pressure) (Ib/ft h); 
Momentum boundary layer thickness 

= ff (+G)(l - u/uG) dy (ft); 

Shear boundary layer thickness 
= ~G/(~~/~~)o) (ft) ; 

Convection boundary layer thickness 

= j; (U/UG)( 1 - b/B) dy (ft) ; 

Conduction boundary layer thickness 
= WWJQO (ft); 
Dimensionless distance variable for “simi- 
lar” solutions ( - ) ; 
Dynamic viscosity of fluid (lb/ft h); 
Kinematic viscosity of fluid (= p/p) (ft2/h); 
Density of fluid (lb/ft3); 
Prandtl or Schmidt number (= p/y) ( - ); 
Integration variable occurring in equations 
(9) and (18) ( - ). 

Subscripts 
G Denotes fluid state in main-stream just 

outside the boundary layer; 
sep Denotes “separation” conditions of section 

3.2; 
0 Denotes fluid state adjacent to the interface; 

4 Denotes terms in equation (13); 
m Denotes terms in equation (18); 
n Denotes terms in equation (9). 

A prime ’ denotes differentiation with respect to 
?* 

1. INTRODUCTION 

I .I Geneid r~rnar~~ 
THE first two papers in the present series, 
Spalding [l], Spalding and Evans [2], were 
concerned exclusively with the velocity equation 
of laminar boundary layer theory when mass 
flows through the boundary layer, and Paper 3, 
Spalding and Evans [3], dealt with the b- 
equation. In this latter paper tables were given 
from which new approximate solutions to the 
b-equation couId be evaluated. These gave 
reasonable agreement with known exact solu- 
tions over wide ranges of the Prandtl/Schmidt 
number, main-stream pressure gradient and the 
mass transfer driving force B. 

The present paper is concerned with the case 
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when B, the driving force for mass transfer, is 
zero. The work has developed out of the methods 
employed in obtaining the earlier results so 
frequent reference will be made to the first three 
papers in the series. 

Since the main aim of the present series is the 
prediction of mass transfer rates, the case when 
mass transfer is in fact zero may be thought to 
be irrelevant. But this is not the case, for, as was 
pointed out in Paper 3, we are interested in 
families of solutions to the boundary layer 
equations for both positive and negative values 
of B; the solutions for B = 0 must therefore 
form important members of these families. It is 
also found that many practical problems in- 
volving mass transfer correspond to very small 
values of B; this is often the case, for example, 
when water vapour either evaporates into or 
condenses out of the atmosphere at ordinary 
temperatures and pressures. The case for B = 0 
can then serve as a useful first approximation, 
the effects of mass transfer being regarded as a 
small correction. In fact, Paper 3 contained an 
approximate formula for estimating the mass 
transfer conductance g from the value of g*, 
the conductance when B = 0. Using tables to 
be given later it is possible to calculate g* to high 
accuracy. 

The present results are expected to be most 
useful, however, in problems when mass transfer 
is entirely absent; the most obvious case is that 
of heat transfer to or from an impervious wall. 
Although, in the literature, a number of papers 
consider this type of problem. comparatively 
few exact solutions to the equations could be 
found: most of these have already been quoted 
in Paper 3. 

The quantity being evaluated in the present 
paper is @i/B). Reference to formulae in Paper 3 
indicates that when B = 0, so is bi (= -ufO). 
The ratio (hi/B) is not zero, however, for, in 
terms of the familiar problem of pure heat 
transfer it is the gradient at the wall of the 
dimensionless temperature with respect to the 
“similar” distance variable 7. In the customary 
nomenclature of heat transfer, therefore, we have: 

where : 

(6:/B) = Nu (2 - /3)1,2/Re1’2. (1) 

NM = local Nusselt number, 

Re = local Reynolds number, and 
/3 = parameter occurring in the velocity 

equation. 

1.2 Outline qf‘present paper 
The main purpose of the present paper is to 

give series expansions from which, knowing the 
solutions to the “similar” velocity equation. 
values of the “wall gradient” (6:/B) may be 
obtained to high accuracy for a range of values 
of the parameter /3, which determines the magni- 
tude of the main-stream pressure gradient, and 
for any value greater than 0.5 of the fluid 
property group (5. 

The series from which values of (hi/B) are 
obtained are in increasing inverse powers of a; 
they are therefore very accurate for high values 
of CT. Some exact values for u = O-7 were found 
in the literature. Sufficient terms were therefore 
taken in the series to give close agreement in the 
fourth significant figure with these exact solu- 
tions. The values of (bA/B) quoted are then 
accurate to better than 0.1 per cent even when 
(T is as low as 0.7. 

Using the series, a table of (6:/B) as a function 
of the parameters /3 and u has been drawn up in 
which the interval in both these parameters is 
small enough to allow of rapid interpolation 
for intermediate values. In many cases, however. 
it may be more satisfactory to use the original 
series for intermediate values of u. 

As has been pointed out in earlier papers. the 
main interest in obtaining “similar” solutions to 
the boundary layer equations is not so much in 
their application to strictly “similar” physical 
configurations (e.g. flow over wedges) as in the 
way they can be used to solve more general 
problems involving non-similar flows. 

Some functions which are useful for such 
calculations are plotted in Figs. 1-4 but are 
only briefly discussed here as their significance 
and applications are to be considered more 
fully in other papers in the series. 

2. STATEMENT OF THE MATHEMATICAL 

PROBLEM 

2.1 Introduction 
It was shown in Paper 3 that the b-equation 

governs the distribution in the boundary layer of 
any conserved fluid property. The present paper 
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is mainly concerned with the “similar” solutions 
to this equation. It should be made clear, how- 
ever, that the word “solution” is used in a re- 
stricted sense in that the important entity to be 
evaluated is the gradient of b at the phase 
boundary, although many other functions in the 
boundary layer may be obtained from this 
gradient. Interest is concentrated on this “wall 
gradient” because the present series of papers is 
mainly concerned with rates of transfer through 
the phase boundary, these rates being determined 
immediately the wall gradient is known. The 
distribution of b in the boundary layer is not 
evaluated, although obtaining the wall gradient 
is an important first step in getting this distribu- 
tion. 

Solutions to the b-equation depend, of course, 
on the distribution of the stream function. It 
will therefore be necessary to refer frequently to 
the velocity equation for “similar” flows. This 
will be quoted but not discussed; reference to 
discussions and tables given in Papers 1 and 2 
will suffice for the purposes of the present 
paper. 

2.2 The velocity equation 
In Paper 1, Spalding [l], it was shown that, 

for “similar” solutions to the boundary layer 
equations the velocity distribution is governed by 
the ordinary differential equation: 

f”’ +fs”+ /3(1 -f’“) = 0. (2) 

When no mass flows through the interface, the 
boundary conditions associated with this 
equation are : 

71 =o, f=O, f’=O 

~+Cc,f’--fl 1. (3) 

In equations (2) and (3) the primes denote differ- 
entiation with respect to the dimensionless space 
co-ordinate. 7, f is the dimensionless stream 
function and /3 a parameter whose value depends 
on the acceleration of the main-stream. These 
functions are more fully defined in the notation 
Iist. 

2.3 The b-equation 
In Paper 3, Spalding and Evans [3], it was 

shown that for a certain restricted group of 

“similar” solutions to the boundary layer 
equations, the distribution of a function b, which 
represents a conserved fluid property in suitable 
dimensionless form, is governed by the ordinary 
differential equation : 

b” + ufb’ = 0 (4) 

with the boundary conditions: 

n=O. b=Ol 

In equation (4) the primes again denote differ- 
entiation with respect to 7, f is the stream func- 
tion occurring in equation (2) and u is the fluid 
property group called the Prandtl or Schmidt 
number depending on the transferred fluid 
property which is under investigation. The 
quantity B occurring in equation (5) is the value 
of b in the main-stream and is assumed to be 
constant. 

From equation (4) the gradient of b at the 
interface, namely b& can in principle be evalu- 
ated once solutions to the velocity equation are 
known. This is done using the relationship: 

(B/b;) = j; ew -1~ j;fdd h. (6) 
It is convenient, for the present, to work in terms 
of the reciprocal of (bJB). 

The aim of the present paper is to evaluate this 
integral for a range of values of the parameter B 
occurring in equation (2) and for any value of 
u greater than 0.5. 

The tables given in Paper 3 included the case 
B = 0 and approximate values of this integral 
could be obtained from them. The accuracy of 
those tables increased with increasing CT. The 
present results are accurate for all high values of 
0. 

3. EVALUATING THE. INTEGRAL AS A 
POWER SERIES IN cs 

When evaluating the integral in equation (6) 
for various values of the parameter ,!3, with the 
single exception of the separation point when 
B = -0.1988, all values of ,!3 considered here 
could be treated by one general method. This 
will be given first and the separation point will 
then be treated by a modified form of this 
method. 
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3.1 The general case 
It is clear that the integral in equation (6) 

for any value of u depends only on the distribu- 
tion with 7 of the stream functionf. Unfortunate- 
ly, however, only a few accurate values of the 
integra1 could be found in the literature. 

On the other hand Merk [4] has shown that 
the integral can be expressed as a series in inverse 
powers of u, which would be very accurate for 
large values of cr. Aithough the present work 
arose out of that paper, the method of deriving 
the series expansion differs in many respects 
from that given by Merk, and so will be given in 
outline below. It has also been possible to modify 
the present method to include cases when mass 
transfer occurs; this work is to be considered 
elsewhere. 

Denoting quantities when evaluated at the 
interface by the suffix 0, the stream function f 
can be expanded in terms of derivatives there in 
the form: 

Inserting this into the integral in equation (6) 
and changing the variable from q to p’, where: 

the integra1 to be evaluated becomes: 

E = 10” e-qq-213 exp -{(A,y43 + A,vj”l3 

+ Agyi:3 + . . .) dyi. (9) 

The quantity (hi/B) is obtained from E using 
the relationship : 

sincefz is known. The problem therefore reduces 
to the evaluation of E in equation (9). 

The tables given in Paper 3 were approximate 
in that only the first two terms in the expansion 
given in equation (7) were used (remembering 
that we are considering here the case of no mass 
transfer so thatdb is zero). In the present paper 
many more terms are included. 

The coefficients A, occurring in the expression 
for E are given by the general formula: 

1 - _-: 
f. CT&) 31 (n+l).R 

An == u’(n-2)i3 (n +--I)! ,fl,l, ( i . (11) 

Since the present discussion is restricted to the 
case when no mass flows through the interface 
the coefficients A,,, A, and A, are zero, and 
because of the transformation used in obtaining 
E, the coefficient A, is reduced to unity. 

In order to calculate the coefficients A,, the 
values of fO(“), the derivatives of .f’ at the wall. 
were needed. These were obtained from equation 
(2) by successive differentiation. In this way each 
.fb OL) higher than f”(,’ could be expressed in terms 
of ,f: and the parameter /3. 

Values of the function fy for the values of p 
considered in the present paper are given in Table 
1. For values of /3 up to 2.0 these were taken from 
Falkner [5, 61; the method used for evaluating 
.fg for higher values of /3 was given in Paper 2. 

in the expression for E given in equation (9) 
the second exponential term in the integrand 
can be expanded as a series in powers of q. 
Each term under the integral sign is then of the 
form e-*y,n1!3, where m has a different value for 
each term; the integral may then be readily 
evaluated term by term using the relationship : 

Table 1. Values of the stream funcfion “wall gradient” f’,‘, for the values of B considered in the 
present paper 

-m -~~ _-.. _._~~~=-~C Yz_ 

& ! 1 ---0.1988 0 -0.1 0.3191 0.0 0.4696 0.1 0.5870 0.2 0.6869 0.3 0.7748 0.4 0.8542 0.5 0.9277 

;, 0.6 0.9960 O-8 1.1200 1.0 1.2326 1.4 1,431 2‘0 1.687 2.043 3.0 4.0 2.346 2.614 5.0 

-.. .__- m-_ ---_B____- ~_. ~.-____~----------- 
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where l? denotes the gamma function. The final 
step in obtaining the required series for E is to 
rearrange these terms into a series in inverse 
powers of n having the form: 

cc 

E = I’(S) + 
c 

3i (13) 

q=1 

in which the coefficients a, are functions of the 
quantities A, and gamma functions; these co- 
efficients become more complicated as q in- 
creases. 

The numerical values of only three gamma 
functions were needed, namely: 

I’(+) = 2.67894, I’($) = 1.35412, 
r(i) = 1. (14) 

All other gamma functions which occurred 
could be expressed in terms of these using the 
relationship : 

r(r + 1) = s(r) (15) 
which holds for any value of Y for which the 
gamma function exists. 

Numerical values of the first nine coefficients 

a, are given in Table 2. This covers the range 
-0.1 < /3 < 5.0. In both directions outside this 
range the accuracy of the present method 
diminished, particularly when a was less than 
unity. The region approaching conditions lead- 
ing to “separation” of the velocity boundary 
layer, namely for -0.1988 s< fi .< -0.1, was par- 
ticularly difficult to treat. On the other hand the 
separation point itself, when p = -0.1988, 
yielded a series which gave high accuracy. 

3.2 The separation point 
When /I = -0.1988 the velocity boundary 

layer is said to “separate” from the interface; 
for the present discussion this merely means that 
f y becomes zero. The above analysis does not 
then apply because the transformation defined 
by equation (7) cannot be used. A modification 
of the procedure can, however, lead to an 
asymptotic series from which (hi/B) can be 
evaluated to high accuracy. Merk [4] also 
considered this case but as there appears to be a 
numerical error in the expansion he obtained, the 
derivation of the relevant series will be given 
here. 

Table 2. Values of the first nine coeficients in the series expansion of the integral E. 

(2) = ; ($j”‘; E = 2.67894 + $fY3 

al a2 a3 a4 a5 a6 a6 as 

-0.1 / - 0.18808 0.04341 0.05748 
0.0 I 0.0 0.0 0.05953 
0.1 0.08344 0.00854 0.04884 
0.2 
0.3 ’ 

0.13533 0.02247 0.04092 

0.4 ~ 
0.17289 0.03668 0.03465 
0.20240 0.05027 0.02930 

0.5 1 0.22663 0.06302 0.02442 
0.6 ~ 
0.8 ’ 

0.24738 0.07509 0.01985 
0.28207 0.09763 0.01136 

1.0 0.31031 0.11816 0+)0316 

1.4 ! 0 35604 0.15555 -0.01247 
2.0 040841 0.20468 -0.03568 
3.0 0.47470 0.27651 -0.07325 
4.0 0.52632 0.33992 -0.11085 
5.0 0.56951 0.39798 -0.14828 

-0~00357 ONI -0GO702 -0.00185 -0~00098 OX@0968 
0.0 0.0 - om661 0.0 0.0 oGOo717 
O+XI153 -O&JOO1 -0.00587 -0dOO62 -0~00013 0~00089 
OGO144 -0+)0045 -0M516 -ON)O81 -0~00021 oGOO92 
0.00110 -0.00118 -0.00456 -0.00086 -0~00018 oWO91 
O+WO8O -0@0206 -O+JO403 -0WO85 -0~00002 omO9o 
0GIO57 - OXI - 000352 - 0.00086 omo19 0GOO86 
0.00042 -0m4O3 -0ClO301 -0GO089 oGOO45 OGOO86 
0.00040 -0GO612 -0GO189 -0~00103 0+)0109 ON@56 
OGOO53 -0GO834 -0GOO61 -0GO127 0~00190 OGOO18 
OGO140 -0.01296 OGO262 - OGO201 0.00390 -0GO111 
OGO315 -0.02078 000913 -0m390 OdIO787 -0.00464 
OGO774 -0.03527 0.02523 -0GO889 0.01731 -0.01553 
0.01306 -0.05227 OX14740 -0.01673 0.03016 -0.03392 
0.01907 -0.07133 0.07600 -0.02728 0.04692 -0.06080 

I -- 

When ,!3 = -0.1988, (2) = & (!g)lil; ,I&, = 3.62561 + !!?! - F _ ??p + o(,,-4) 
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Since f y is zero the expansion for f takes the 
form : 

Using the transformation : 

(16) 

(17) 

the integral to be evaluated, denoted by Esop 
since it applies only to the separation point, 
is: 

Es,, = jOw e-wp-3’4 exp -{tC,v2 $- ClIcp3 

+ C& + . . .)dy Cl@ 

and @i/B) is obtained from Esep using the 
relationship: 

The coefficients C,,,, occurring in equation (18) 
are given by the general formula: 

Again expanding the exponential term in the 
integrand of equation (18) gives a series for 
Eser, in terms of gamma functions and the 
coefficients C,. Using the values ,f’i’ = 0.1988 
and I’(i) = 3.62561 gives finally for Esep the 
asymptotic expansion : 

0.084049 0.005907 
&en = 3.62561 + -g~~~~ - (72--- 

0~0001405 - - -- .~.. 
9 

$ O(b). (21) 

As has been noted the coefficients in this series 
differ from the values given by Merk 141. The 
series also contains one more term than was given 
by Merk. 

3.3 Asymptotic behaviour at high (r 
It is clear from equation (13) that for high 

values of u the integral E is constant. From 
equation (10) therefore, @G/B) is proportional 

to u1j3. This is a well-known relationship which 
was exploited when plotting some of the figures 
given in Paper 3. In order to bring closer together 
curves for different values of U, the group 
~-1~3(~~~~) was plotted against the driving force 
B. 

This relationship does not, however, hold for 
the separation point. From equations (19) and 
(21) it may be seen that for this case when 0 is 
large, (6:/B) is proportional to &*. 

These asymptotic relationships will be used 
later to include on the same figures curves re- 
lating to a wide range of CT. 

4. FUNCTIONS OBTAINED FROM THE 
ASYMPTOTIC SERIES 

The asymptotic formulae given in Table 2 for 
evaluating (bJB) should only be used for CT 1: 0.5 
since the accuracy decreases rapidly as u de- 
creases below this value. 

Using these formulae values of (&/B) have 
been calculated for wide ranges of p and o; the 
results are given in Table 3. 

The range of main-stream pressure gradient 
included in Table 3 covers the values encountered 
in a wide range of practical problems. It includes 
the point of separation for two-dimensional 
flow (p = -0*1988), the case of zero pressure 
gradient (/3 = O), the stagnation point for axially 
symmetric, three-dimensional flow (correspond- 
ing to /? = 0.5; see Paper l), the stagnation point 
for two-dimensional flow (p =-. 1.0) as well as 
some more highly accelerated main-streams than 
the last. 

For application to problems involving heat 
transfer calculations, when G is the Prandtl 
number, the table covers the case of most gases, 
which have a Prandtl number near 0.7, as well as 
the majority of liquids. The Prandtl number for 
water, for example, ranges from about 7 at room 
temperature to about 2.0 at 200°F. Typical 
values for a more viscous fluid like engine oil 
would be u = 10 000 at room temperature to 
O‘ = 1000 at 150°F. Fluids such as liquid metals, 
which have a high thermal conductivity and 
therefore a low Prandtl number (e.g. for mercury 
c = O-02), are not however included. 

Fluids will rarely have values of cT exactly equal 
to those given in Table 3 but the intervals in the 
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parameters p and u are believed to be convenient 
for interpolation over most parts of the table. 
This is clearly not true for decelerated flow ap- 
proaching the conditions when the velocity 
layer separates. Although such interpolation 
would give the sort of accuracy needed for many 
practical problems, higher accuracy may some- 
times be needed for some value of g not given. 
It is then a simple matter to calculate new values 
of (bb/B) from the series given in Table 2. 

4.2 Accuracy of Table 3 
The series from which the values of (hi/B) given 

in Table 3 were calculated are asymptoticalIy 
accurate for high values of u. For sufficiently large 
u therefore the figures should be correct to one 
place in the last digit. For Q ::; 1 however the 
accuracy may not be so high. 

Some idea of the accuracy of the values may 
be obtained by comparing with exact solutions 
quoted in the literature. This is done in Table 3 
by giving in brackets the differences in the final 
digit between the present values and exact 
solutions given in the literature. The exact 
values were taken from Mickley et al. [7], 
Merk 141, Livingood and Donoughe [S] and 
Howe and Mersman [9]. It should be realised, 
however, that exact solutions quoted in the 
literature are found to disagree with each other 
by up to three units in the fourth significant 
digit. 

Exact calculations made since Table 3 was 
drawn up, using an entirely different method, 
have largely confirmed the figures in the table. 
Many values can be in error by one unit in the 
last place due to rounding off. This is, in fact, the 
case. Apart from these, however, the only serious 
errors in the table are for u L-= O-5 and 0.6 but 
even so only amount to 3 units in the last sig- 
nificant digit. The results of exact calculations 
are to be published elsewhere. 

No exact calculations have, however, been 
made for the region marked off in the table as 
inaccurate. Values in this region are almost 
certainly inaccurate. 

4.3 Other functions evaluatedfiom (hi/B) 
It was shown in Paper 3 that a number of 

other functions related to the b-boundary layer 

may be evaluated from (bh/B). For ease of refer- 
ence, and because many of the formulae take on a 
special form when no mass Aows through the 
interface, the relevant formulae are listed below : 

A: due+ = !!_ 
v dx (b;l@2 

t&j ddz 2(1 - I@) .-.A4= --_ 
v dx (&‘B)2 

uG dAz 2(1 - ,L3) b;, 2 - _z - ..~ ~_._ 
v dx i-1 a2 B 

(22) 

(23) 

(24) 

(2.5) 

(26) 

(27) 

(28) 

Y 

z 

= 

In the literature many functions are written in 
terms of the distance x of the point in question 
from the start of the boundary layer. In terms of 
the present formulation of similar solutions some 
of these functions are : 

(32) 

d,fit&Z (2 _ /3)1’2 

X @i/B) 
(33) 

A,Reli2 - 
X 
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where the Nusselt number NU and the Reynolds 
number Re have local values. 

5. CURVES OF FUNCTIONS OBTAINED 
FROM TABLE 3 

is clearly a pressure gradient parameter related 
to the momentum boundary layer thickness 
6, and $, which is (u&)(dS$dx), is a measure 
of the rate of growth of the momentum thickness 
with distance x. 

5.1 General 
Curves have been drawn showing the relation- 

ships between many of the functions occurring 
on the left-hand sides of equations (22) to (31). 
Some interesting features about the curves will 
be indicated but their application for calculating 
functions in non-similar boundary layers will not 
be discussed. This is to be done in other papers in 
the series. 

Figures l(a, b) and 2(a, b) give analogous 
relationships for thicknesses associated with the 
b-boundary layer. The relevant functions have 
been multiplied by an appropriate power of u in 
order to bring closer together curves for different 
values of u. Early forms of these curves for one 
value of u, namely u = 0.7, were given by Smith 
and Spalding [lo]. 

5.2 Figure l(a) 
In Papers 1 and 2 it was shown that, in order to This figure, which applies to the conduction 

use the “similar” solutions to the velocity equa- thickness A,, shows the relationship for ac- 
tion to obtain information about non-similar celerated and slightly decelerated flows. Because 
boundary layers, tables or curves were needed the wall gradient (bh/B) is almost exactly pro- 
showing the variation of a quantity denoted by portional to ff1/3 when u is large, the multiplying 
F2 with the parameter (6i/v)(duo/dx). The latter factor in this figure is u~/~. As a becomes very 

-I 0 I 2 3 4 5 
2 

$13 A, ‘% 
Y dx 

FIG. l(a) Conduction thickness d,, accelerated and slightly decelerated flows. 
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large the curves clearly tend to the asymptotic curved in this region it is easy to see how they 
curve shown as a = co. continue downwards and to the right. 

It is clear from the curves for decelerated 
flows shown in this figure, which extend as far 
as fi = -0.1, that the wall gradient (bJB) is not 
proportional to u113 in the lower part of the 
range covered. Hence the cross-over of the curves 
in this region, For more highly decelerated flows 
the curves diverge rapidly, particularly those for 
high u. 

5.3 Figure l(b) 
In section 3.3 it was noted that for the separa- 

tion point (hi/B) is proportional to 19’~. The 
curves corresponding to Fig. l(a), but for deceler- 
ated flows, have therefore been drawn using the 
multiplying factor u112. The separation points for 
a number of values of u are shown on this figure. 

Because of the scale of this figure it was con- 
venient to omit parts corresponding to highly 
accelerated flows. Since the lines are only slightly 

There is some uncertainty about the shapes of 
these curves as only three values of fi could be 
used from the present results. The curve for 
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u = 0.7 was drawn in using the results given by 
Livingood and Donoughe [S]. The other curves 
were then made to have the same general shape 
as this between p = -0.1 and /3 = -0.1988. 

For u = 03 only the separation point is 
included because for both /3 = 0 and /I = -0.1 
the relevant point is at the origin. 

5.4 Figure 2(a) 
This figure, which relates to the convection 

thickness d,, corresponds to Fig. l(a). The curves 
have not been extended into the region of de- 
celerated flow, however, as the shapes of the 
curves could not be judged as was done for the 
earlier figure. 

It was again convenient to omit the region of 
highly accelerated flows. 

5.5 Figure 2(b) 
This figure relates to the convection thickness 

d, for decelerated flows. The scale of the figure 
did not allow the curves for CJ > 1000 to be 
included and parts of the curves for u > 10 had 
to be omitted because their shapes could not be 
judged with any certainty from that for a = 0.7. 

Again a few separation points are indicated. 

5.6 Figures 3 and 4 
In suggesting an approximate method for 

calculating rates of heat transfer between any 
laminar fluid stream and a solid surface, Spald- 
ing [ 1 l] set up differential equations which could 
be integrated numerically in a fairly straight- 
forward manner. Referring to expressions defined 
in equations (28) to (31), the differential equation 

r 

” @I 0.2 0.3 . _ 
G.4 

__ 
"9 

41 A'du 

C 

cZ$2 

FIG. 2(a) Convection thickness A, accelerated flows. 
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for evaluating the conduction thickness A, was 
of the form: 

Y = Y(X) (35) 

and for the convection thickness A, the equation 
was : 

z = Z(W). (36) 

In these equations the functions Y and Z are 
measures of the rate of growth of the relevant 
boundary layer thickness with distance x along 
the wall, and the functions X and W are curva- 
ture parameters which are a measure of the 

amount by which the b-boundary layer penetrates 
into regions where the velocity layer is appreci- 
ably curved. The forms of the functions Y and 
Z were obtained from the exact “similar” 
solutions to the boundary layer equations. 

When plotting Y and Z as functions of X and 
W respectively, it was found that exact similar 
solutions for a wide range of Prandtl number 
were close to a single curve. Figs. 3 and 4 show 
these relationships obtained from the present 
results. Curves for only a few values of G are 
drawn on these figures because such curves are 
very close together on this scale. 
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FIG. 3. Y as a function of X. 
--- D large (from Paper 3). 

present solutions. 
- - inaccurate region. 

When u 3 0.5, therefore, the assumption of a 
single curve for the relationships given in equa- 
tions (35) and (36) would introduce only a small 
error in the estimation of boundary layer thick- 
nesses for accelerated and slightly decelerated 
flows. For conditions approaching separation, 
however, the error would increase rapidly. These 
conditions occur for large negative values of the 
abscissae X and W, beyond the ranges of Figs. 
3 and 4. The separation points themselves 
correspond to X = -co, Y = 0 and W = -co, 
Z = cc respectively. 

In Figs. 3 and 4 the line for large u was ob- 
tained from the approximate results given in 
Paper 3. 

0 /3 = -0.1 
x /I = 0.5 
n /?=l.O. 

It should be noted that when u < 1.0 and 
/3 > 2.0 the present results are inaccurate. This 
inaccurate region has already been indicated in 
Table 3. This shows up in Figs. 3 and 4 as a 
reversal in the slopes of the curves for large 
values of the abscissa. 

In Fig. 3 all the results for u > 20, except that 
for the separation point, are close to the point 
X = 0, Y = 6.41, the well-known solution ob- 
tained by Lighthill [12]. 

The points on Figs. 3 and 4 give a few values 
of the parameter ,!?. The curves from the present 
solutions have been extended beyond p = -0.1 
by giving them the same shape as those for 
a = O-7 and u-large whose shapes were known. 
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6. APPROXIMATE METHOD NEAR 
SEPARATION 

It has been seen that, if it is greater than O-5, 
the Prandtl/Schmidt number has only a small 
effect when boundary layer problems are formu- 
lated in terms of the functions X, Y, W and Z. 
It is, of course, for the same reason that the 
asymptotic series of Table 2 give good accuracy. 
The close connection between the present results 
and this approximate formulation may be seen 
by comparing, say, equations (10) and (29). The 
rate of growth parameter Y is related to the 
integral E of the present paper by: 

0 ,B = -0.1 
>: fi = 0.5 
a /3=1.0. 

y = f. (37) 

This immediately suggests that near the point of 
separation the parameter Y should be replaced 
by Ysep given by: 

1 
Y sep = - 

Y i 

4 Uf'A' 
=3(&g@ (38) 

where the second form is written in terms of 
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“similar” solutions. The corresponding curva- 
ture parameter is: 

x Gmvw: = f?l 
sep = (a%4/ay2), (f’(p)(bJB)2 (3g) 

the second form again being in terms of “similar” 
solutions. For the case of no mass transfer, the 
gradients off occurring in the last expression 
are given byf ‘< = -/3andFi = (28 -l)(fg)2. 

It should be noted that (&/8y3)0 cannot be 
used in the numerator of Xsep because it is 
identically zero for all fi when no mass flows 
through the wall. For very large a it may be 
shown that Ysep tends to the value 21.599. 

In the same way other functions can be derived 
to replace Wand Z near the point of separation. 

7. CONCLUSIONS 
(a) Using the formulae and coefficients given 

in Table 2 and the values off,” of Table 1, the 
wall gradient @L/B) can be evaluated accurately 
for a wide range in the parameter p and for any 
value greater than 0.5 of the Prandtl/Schmidt 
number a. 

(b) From values of @i/B) many other func- 
tions associated with the b-bounda~ layer can 
also be evaluated from the formulae of section 
4.3. 

(c) Using a different method of calculation 
more accurate results than those in Table 3 have 
now been obtained. They include results for 
values of 13, in particular many negative values, 
not covered in the present paper as well as a 
range of low values of a. These are to be published 
elsewhere. 
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